Marina Ramirez-Alvarado, Mayo Clinic and a member of the Biophysical Society’s Committee for Professional Opportunities for Women and Committee for Inclusion and Diversity, and Dwight P. Wynne, California State University, Fullerton, explore the problem of imposter syndrome in this three part series. Read part one and part two.
In this series we’ve explored impostor syndrome as being a result of two different types of tensions: (1) individually-defined experience vs. community-defined competence and (2) personal vs. community identity. Generally, individuals with impostor syndrome are encouraged to work through their issues on the personal level. However, in communities such as ours, in which a large number of people have these issues, it is also worth investigating potential changes that we can make at the community level.
To address the tension between experience and confidence, the most important thing we can recommend is to institute programs that stress the collective experience of failure in science. Many of us who make it this far in science are unaccustomed to failure: we assume that our failure is proof of our incompetence. We don’t know how to deal with it, and we don’t understand (or remember) that everyone else is dealing with it too. Academia is a leveled field where all of us go from being the top students to being” just one of them.” When all we see from other scientists are their successes, it’s incredibly easy to believe that we’re the only ones failing, and from there it’s a short trip to impostor syndrome (“My colleagues are so successful while I regularly have failures”).
There are a number of ways this recommendation could be implemented. For younger scientists, this could be instituted as part of a mentorship program or even a one-unit graduate course (ideally taken during the semester before qualifying exams). For older professionals, this could be instituted as a rotating workshop that could accompany scientific conferences or annual meetings of scientific societies. We have also found that even just instituting a safe space for people to talk about their scientific frustrations, allowing them to recognize that they’re not the only ones feeling this way, can positively affect how people calibrate their abilities relative to their peers.
Beyond this, we believe that it is time for the community to think more deeply how it assigns competence. We hazard a guess that most people in the community believe scientific competence to be objectively defined. After all, it’s easy to count the number of publications a person has, and it’s easy to count the number of citations those publications receive. However, authorship attribution can involve complex social interactions, junior faculty generally have a harder time publishing than established faculty do, and many papers are cited due to authors’ reputation. In our view, beyond a certain baseline, scientific competence is indirectly defined through one’s social connections within the community.
Conferences and meetings, especially, are just as much about making important scientific social connections as about disseminating scientific knowledge. Implementing programs to make it easier for graduate students or underrepresented minorities or any other group to attend a meeting is a start, but simply being there and presenting some scientific research isn’t enough. What social connections are they gaining, especially those that help tie them to the community? What informal meetings, where much of the “real work” at conferences takes place, are they participating in? Do they even know that they’re supposed to be doing these things? At some level, bridging these information gaps might be work for diversity and inclusion committees of professional societies, but we also believe this is something extremely easy to institute at even the lab level.
For the tension between personal and community identity, the most important thing we can recommend is that people stress the personal journey of science when discussing their own careers. Less scientific communication should be about our research, our papers, and our grants; more scientific communication should be about why we perform that research (even when it means repeating the same experiments day after day), what drives us to write those papers (even when it means submitting them to our eighth-choice journal), and how we aspire to grow as scientists. Especially for young scientists just testing their new scientific identities, it’s easy to believe that there’s one “ideal” identity promoted by the community and that a successful scientist must project this identity, no matter how at odds it is with the rest of us. By presenting a diversity of identities, we as a community fight that preconception and allow all of us to discover our true scientific identities.
While it’s important to stress that science is a personal journey, it’s equally important to recognize and help those who are unsure of where in the scientific community they belong. In some cases, these people are strong teachers or mentors who may not have the skills or desire for cutting-edge research, stuck in an environment that prioritizes such research. These people already have fully-developed scientific identities; their problem is figuring out how (and whether) those identities fit within the larger scientific community. For these individuals, even a little bit of peer recognition may be sufficient; not necessarily in the form of an award, but simply by knowing that others value their contributions to the community.
In other cases, these people may not be fully confident in their skills or are still trying on different scientific identities. They don’t have to be early-career researchers; they could be established researchers poking their heads into new, interesting fields. In these cases it’s vital to re-frame science as a collaboration rather than a competition. Rather than dangle “incentives” for individual performance, encourage junior lab members to become involved and excited in each other’s projects. Rather than seeing a threat from researchers moving outside of their usual domains, see a potential co-author bringing a new perspective to your field. In our view, scientific collaborations provide critical opportunities for researchers to engage each other’s personal and community identities; however, few scientists intuit how to be good collaborators and even fewer learn through anything other than frustrating experiences. Again, this is a problem that can be addressed at multiple levels: for instance, department retreats and scientific society meetings could offer encouragement and workshops about collaboration, and PIs could assign complex tasks to teams of researchers rather than allowing junior researchers to treat particular projects as their personal fiefdoms.
Finally, there are two aspects of change that must be acknowledged, no matter how the problem of impostor syndrome is attacked at the community level. First, there will always be people who leave the community because of mismatches between community and personal identities. When someone chooses to leave the community, it should not necessarily reflect poorly on that individual, his/her mentors, or the community as a whole. However, too often people leave because the community – intentionally or unintentionally – encourages them to do so. We believe that retention programs, including those that help scientists overcome impostor syndrome, should focus on promoting a more inclusive community identity, allowing more people to find ways in which their personal identity aligns with that of the community.
Second, these recommendations—and any other programs intended to help scientists overcome impostor syndrome—need to be supported by demonstration and emulation of positive social behavior. Defining acceptable community interaction through a series of rules about what not to do is a great way to breed resentment and confusion. Instead, implementing small changes in small areas where we have outsized social influence – our labs, our committees, etc. – can produce the biggest results.